A series of 5-(5,6)-dihydrouracil substituted 8-hydroxy-[1,6]naphthyridine-7-carboxylic acid 4-fluorobenzylamide inhibitors of HIV-1 integrase and viral replication in cells.

نویسندگان

  • Mark W Embrey
  • John S Wai
  • Timothy W Funk
  • Carl F Homnick
  • Debbie S Perlow
  • Steven D Young
  • Joseph P Vacca
  • Daria J Hazuda
  • Peter J Felock
  • Kara A Stillmock
  • Marc V Witmer
  • Gregory Moyer
  • William A Schleif
  • Lori J Gabryelski
  • Lixia Jin
  • I-Wu Chen
  • Joan D Ellis
  • Bradley K Wong
  • Jiunn H Lin
  • Yvonne M Leonard
  • Nancy N Tsou
  • Linghang Zhuang
چکیده

Introduction of a 5,6-dihydrouracil functionality in the 5-position of N-(4-fluorobenzyl)-8-hydroxy-[1,6]naphthyridine-7-carboxamide 1 led to a series of highly active HIV-1 integrase inhibitors. These compounds displayed low nanomolar activity in inhibiting both the strand transfer process of HIV-1 integrase and viral replication in cells. Compound 11 is a 150-fold more potent antiviral agent than 1, with a CIC(95) of 40 nM in the presence of human serum. It displays good pharmacokinetics when dosed in rats and dogs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase.

The increasing incidence of resistance to current HIV-1 therapy underscores the need to develop antiretroviral agents with new mechanisms of action. Integrase, one of three viral enzymes essential for HIV-1 replication, presents an important yet unexploited opportunity for drug development. We describe here the identification and characterization of L-870,810, a small-molecule inhibitor of HIV-...

متن کامل

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Design, synthesis and anti-HIV integrase evaluation of N-(5-chloro-8-hydroxy-2-styrylquinolin-7-yl)benzenesulfonamide derivatives.

Styrylquinoline derivatives are demonstrated to be HIV-1 integrase inhibitors. On the basis of our previous CoMFA analysis of a series of styrylquinoline derivatives, N-[(2-substituted-styryl)-5-chloro-8-hydroxyquinolin-7-yl]-benzenesulfonamide derivatives were designed and synthesized,and their possible HIV IN inhibitory activity was evaluated.

متن کامل

Hyperbranched molecular structures with potential antiviral activity: derivatives of 5,6-dihydroxyindole-2-carboxylic Acid.

In the search of new HIV-1 integrase (IN) inhibitors, we synthesized a series of multimeric 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives. Preliminary results indicate that hyperbranched architectures could represent a peculiar molecular requisite for the development of new antiviral lead compounds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry letters

دوره 15 20  شماره 

صفحات  -

تاریخ انتشار 2005